Project Report

Naga Srihith Penjarla Nandakishore S Menon
Mayank Kabra

Idea

This project aims to securely perform DNS query resolution in loT
devices using Secure Multi-party Computation protocol. We need 3
loT devices in the same network (LAN) to run this protocol. The
idea is to give each of the three devices a share of the key used for
encryption/decryption of DNS queries/responses. As no single
device owns the key entirely, it prevents a
single-point-of-compromise.

This project uses the Paillier cryptosystem for 0T devices to
communicate with the DNS server. It is a homomorphic public-key
cryptography algorithm. The DNS server has a public-private key
pair. The public part is known to all the clients. An loT client who
needs to query the resolver generates a symmetric key (AES-128)
and encrypts this key with the resolver's public key, and sends it to
the resolver. The resolver now learns the client's symmetric key by
decrypting it using its private key. Thus, the resolver and the client
can decrypt/encrypt the DNS queries/responses using the
symmetric key.

The symmetric key that the client will send to the resolver is
distributed among the three |oT devices. For this project, we use a
3-Party Computation protocol named ASTRA. Each party generates
a part of the key, and the final key is the sum of the keys generated
by the parties. Once each party generates their share of the key,
they secret share it according to the semantics of the ASTRA
protocol.



Whenever a device has a query, it secret shares the query with the
other devices, and then using the ASTRA’s shared circuit evaluation
method, they encrypt the query. A similar process is done at the
time of decrypting the response got from the server.

Deliverables

Following is a list of deliverables of this project:

e DNS Resolver
e DNS Client for loT devices

Technologies

o C/C++
e Socket Programming

Implementation Details

DNS Resolver:

e The code for the DNS recursive resolver has been written
in C/C++ programming language. The resolver listens on
port 53 for incoming DNS queries from DNS clients.

e Encryption - The queries/responses sent/received are
encrypted using AES-128-bit encryption. The AES-128-bit
key is initially received from the client using homomorphic
public-key cryptography. We have used the Paillier
cryptosystem for this purpose.



DNS Client for loT devices:

Symmetric Encryption

e Each of the three devices in our multi-party arrangement
(here, 3-party) randomly produces a key K. The final key
K is created by ADDing every K,. K = K; + K, + K3, which is
further encrypted using the resolver's public key.

e The shares of the key are generated using a 3-party
protocol, ASTRA and the symmetric-key protocol AES
(Advanced Encryption Standard). The key K is 128-bits as
AES takes 128 bits as input and outputs 128 bits of
encrypted ciphertext. AES relies on the
substitution-permutation network principle, which is
performed using a series of linked operations involving
replacing and shuffling the input data.

e The symmetric key generation takes place in a sequence
of steps:

1. SubBytes: Each byte is substituted with another byte in

this phase. It utilises a lookup table commonly known
as the S-box.

2. ShiftRows: In this step, each row is shifted a particular
number of times.

3. MixColumns: This process essentially involves
multiplying matrices. Each column is multiplied by a
particular matrix, which changes the order of each byte

in the column.



4. Add Round Key: The resultant output of the previous
stage is XOR-ed with the corresponding round key.

Symmetric Decryption

e The decryption proceeds in the opposite direction to it,
which, when performed, reverts the changes.

e All the encryption and decryption steps are performed in a
shared manner, following the sharing semantics of
ASTRA.

Asymmetric Encryption

e For the client group to perform DNS queries, the session
key needs to be generated, encrypted and communicated
with the DNS Resolver for each session.

e The encryption of the session key is typically done using
an asymmetric encryption protocol where the DNS
resolver’s public key is used to encrypt the session key
generated by the client. This encrypted key is sent to the
resolver, which decrypts it and uses it to decrypt each of
the queries during that session.

e |n our implementation, we are using the Paillier
cryptosystem to perform the session key encryption. The
Paillier cryptosystem is a additive homomorphic
asymmetric encryption algorithm used for public key
cryptography. Let’s say keys k1’ k2 are encrypted to get

P(kl) and P(kz) using Paillier cryptosystem, then



P(k1 + kz) = P(kl) + P(kz).We are leveraging the

additive homomorphic nature of the Paillier cryptosystem
to generate the session key and communicate it with the
resolver.

Key generation: A 128 bit key, K is generated by each of

the parties within the client system and the session key
would be the sum of each of these keys (K0 +K + Kz).

Let P, be the party initiating the query. Each party p, will
generate their corresponding Kz and compute P(Ki) using
the public key of the resolver. Then parties P, and P, will
send their encrypted keys to Py P, will sum their encrypted

keys with its own encrypted key and compute
P(KO + K+ Kz) which is the encryption of the session

key. This result is then sent to the DNS resolver, which
can decrypt it using its private key to obtain the session
key.

In order to perform the Paillier encryption, we have used
the libhcs library. The public key consists of a public key P,

and a random initialization hcs . These are made
random

publicly available by the resolver. The libhcs
implementation of Paillier cryptosystem required the
random initialization for encryption using the public key.
However the same may not be necessary for other
implementations. The shares K possessed by each of the

client parties are the shares that will be used for
encrypting the queries using MPC.


https://github.com/tiehuis/libhcs

Technical Details

The functions which play an essential role in this
implementation are discussed below.

Symmetric: The entire encryption and decryption have been
done in 2 phases, i.e. an offline phase and an online phase.
The offline phase, also known as the preprocessing phase,
generates the random shares independent of the input value.
Once the parties give their inputs, the online phase begins (as
this is an input-dependent phase). The preprocessing is done
to save time.

e Encryption: The encryption is majorly done using the
following functions:

1. offline_phase(): Runs the offline part of the encryption as
per the ASTRA protocol, where the shared randomness
data is pre-computed.

2. online_phase(): Runs the online part of the encryption as
per the ASTRA protocol, where private inputs of the
parties are used along with the pre-computed
randomness.

3. offline_secret_share(): Generates common randomness
as per the ASTRA protocol for each party.

4. online_secret_share(): The querying party secret shares
its query with the other parties using the previously
computed random data.



. SBox(): Evaluates the AES s-box circuit (Boyar-Peralta) in
a secret shared fashion. Each gate called within the
function performs operations specified by ASTRA. It is the
only non-linear circuit in the whole AES.

. shiftrow(): Performs the AES shiftrow operation in a secret
shared fashion. As it contains all linear operations, parties
don’t need to interact and can do the computation locally.

. mixcolumns(): Performs the AES mix-column operation in
a secret shared fashion. It is also a local evaluation.

. key_expansion(): Used for generating keys for each
round. It is non-linear as it makes use of the SBox.

. AND(): Performs the AND operation as per the semantics
of the ASTRA's offline AND protocol.

10. AND_online(): Performs the AND operation as per the

semantics of the ASTRA’s online AND protocol.

reconstruct(): Reconstructs the shared value. Each
party sends a part of its share to the querying party
following a cyclic order.

e Decryption:

1. inverse_SBox(): Evaluates the AES inverse s-box circuit in

a secret shared fashion. Each gate called within the
function performs operations specified by ASTRA. Itis a
non-linear circuit.



2. inverse_shiftrow(): Performs the AES inverse shiftrow
operation in a secret shared fashion. As it contains all
linear operations, parties don’t need to interact and the
computation can be done locally.

3. inverse_mixcolumns(): Performs the AES inverse
mix-column operation in a secret shared fashion. It is also
a local evaluation.

4. inverse_key expansion(): Used for generating keys for
each round. It is non-linear as it makes use of the inverse
SBox.

5. AND(): Performs the AND operation as per the semantics
of the ASTRA's offline AND protocol.

6. AND_online(): Performs the AND operation as per the
semantics of the ASTRA's online AND protocol.

7. reconstruct(): Reconstructs the shared value. Each party
sends a part of its share to the querying party following a

cyclic order.

Asvymmetric:

The asymmetric operations are majorly done using the
following functions:

1. get_pub_key(): Get the public key of the DNS resolver

2. gen_key(): Each party generates its share of the session
key.



3. ecnrypt_key(): Each party encrypt their share of the key
using the public key of the DNS resolver.

4. receive_keys(): The querying party receives the other
parties' encrypted shares of the session keys.

5. add_keys(): Add all the encrypted session keys. As the
Paillier cryptosystem is homomorphic, adding the
encryption of the shares of the keys will result in the
encryption of the sum of the shares.

6. send_key(): Shares the encrypted session key to all the
parties and send it to the DNS resolver.

Resolver:

1. lookup(): This function works to gather authoritative
answers to the client’s query from the nameserver.

2. recursive_lookup(): This function recursively calls the
lookup function to perform the name resolution.

3. decrypt_key(): Using the private key, decrypt the session
key sent by the DNS client.

Challenges Faced

1. Performing asymmetric encryption using MPC - MPC
protocols securely evaluates functions represented in
the form of arithmetic/boolean circuits. But, for the
asymmetric encryption, we could not find any
state-of-the-art MPC protocol. We decided to use the
RSA cryptosystem but could not find any efficient



implementations of MPC protocol evaluating the RSA
algorithm in a privacy-preserving fashion. That is why
we decided to use homomorphic public-key

cryptography.

2. Pailier cryptosystem: The library used for performing
encryption and decryption, as per Paillier
cryptosystem, required a random seed for generating
the public key. The encryption function also requires
this random key of this library. Since the key
generation is done at the Resolver’s end and the client
does the encryption, the seed had to made publicly
available.

Active Issues

1. DNS resolver - The resolver is not able to resolve all the
queries. There are some queries for which the resolver
returns only the Alias name. We are trying to debug this
issue using packet analysis tools.

10



